Ein Forschungsverbund unter Leitung der TU Graz will die im abgeleiteten Tunnelwasser des Brenner Basistunnels steckende Wärme für die Energieversorgung ganzer Stadtteile nutzen. Im Rahmen des Programms „Stadt der Zukunft“ wird nun ein nachhaltiges Konzept für die Stadt Innsbruck erarbeitet.

Der Brenner Basistunnel soll nach seiner Fertigstellung in ungefähr zehn Jahren für Entlastung im Transitverkehr zwischen Italien und Österreich sorgen. Die Brenner Basistunnel Gesellschaft (BBT SE) und die Innsbrucker Kommunalbetriebe wollen jetzt gemeinsam mit dem Institut für Felsmechanik und Tunnelbau der TU Graz das geothermische Potenzial des Tunnels ermitteln. „Wir untersuchen, ob und wie das Drainagewasser aus dem Brenner Basistunnel zum klimafreundlichen Heizen und Kühlen von Häusern oder sogar ganzen Stadtvierteln in Innsbruck genutzt werden kann“, sagt Institutsleiter Thomas Marcher.

Innerhalb eines Jahres wollen die Forschenden mithilfe von Simulationsmodellen für den Brenner Basistunnel eine erste Abschätzung treffen, welche infrastrukturellen Maßnahmen benötigt werden, um die höchste Energieausbeute zu erzielen. „Wir testen etwa Möglichkeiten, ob und wie wir die Temperatur des Drainagewassers auf ein höheres Niveau bringen können“, erläutert Projektkoordinator Thomas Geisler vom Institut für Felsmechanik und Tunnelbau. Eine denkbare Variante seien Absorber-Techniken (Energie-Anker oder Energie-Sohlen), die an der Tunnelinnenwand verbaut werden und die Gebirgswärme aufnehmen. „Darüber hinaus wollen wir klären, wie eine sinnvolle ökonomische Verteilung des Wassers hinein in die Haushalte erfolgen kann und wie die Wärmepumpen und die Wärmeübertrager geplant oder adaptiert werden müssen.“

Tunnel-Neigung und dritte Röhre als Kostenvorteile

Bei ihren Planungen kommen den Forschenden die Alleinstellungsmerkmale des mit 64 Kilometern dann längsten Eisenbahntunnels der Welt zugute: Durch seine Länge und seine Neigung zu Innsbruck hin fließt das Tunnelwasser im Brenner Basistunnel automatisch und ohne zusätzlichen Pumpenaufwand auf die Stadt zu. Außerdem befindet sich unter den Hauptröhren ein Erkundungsstollen, der schon fast fertiggestellt ist und über den auch das Drainagewasser der Haupttunnel zukünftig abgeleitet wird.

Im Erkundungsstollen können somit Konzepte zur Energiegewinnung entwickelt werden, die den Bahnbetrieb nicht behindern. Die Umsetzung ist demnach mit weniger Aufwand und mit geringeren Kosten verbunden, als dies bei vergleichbaren Projekten wie dem Fasanenhof-Tunnel in Stuttgart, dem Gotthard-Basistunnel in der Schweiz und der Unterinntaltrasse (Tirol) der Fall war. Dort wird eine ähnliche Form der geothermischen Energiegewinnung bereits umgesetzt.

Die Herausforderung bleibe trotzdem groß. Um das effizienteste System identifizieren zu können, müssen die Forschenden die Menge und die Temperatur des Wassers kennen, das nach Fertigstellung des Brenner Basistunnels zur Verfügung steht. Fachlich unterstützt werden sie hierbei von Teams des AIT und der Geologischen Bundesanstalt sowie von Forschern des Instituts für Angewandte Geologie und des Instituts für Energie und Verfahrenstechnik. „Wir haben das Projekt sehr interdisziplinär angelegt, zumal das für das beste Ergebnis die Expertise aus den Fachgebieten Hydrogeologie, Tunnelbau, Verfahrenstechnik und Hydrochemie braucht“, so Geisler. Die notwendigen Daten für die Untersuchungen kommen von der BBT SE und den Innsbrucker Kommunalbetrieben.

Erkenntnisse sollen auf bestehende Tunnelbauten übertragen werden können

Thomas Marcher leitet das Institut für Felsmechanik und Tunnelbau an der TU Graz. (Bildquelle: Lunghammer – TU Graz)

Ein weiterer wichtiger Kernaspekt der Arbeit zielt auf die Übertragbarkeit des Konzepts auf andere, auch bestehende Tunnelbauten ab. Die Forschungsgruppe wird im Zuge des Projekts untersuchen, mit welchen Technologien aktuelle Tunnelbauprojekte ergänzt und bereits aktive Tunnelanlagen nachgerüstet werden können, um ihr energetisches Potenzial voll auszuschöpfen. „Das oberirdische Platzangebot wird immer knapper und der Energiebedarf immer größer. Untertagebauwerke sind natürliche Energie- und Wärmequellen. Nicht nur aus ökologischer Sicht, auch aus Platzgründen ist es also nur gut und sinnvoll, diese Infrastruktur zukünftig verstärkt für die Energieversorgung zu nutzen“, hofft TU-Graz-Wissenschaftler Marcher auf Vorbildwirkung für Tunnelplaner und -betreiber auf der ganzen Welt.

Bei aller Zuversicht für eine nachhaltige Wärmenutzung mahnt der Felsmechaniker zu einem besonnenen Vorgehen: „Wir müssen intensiv überprüfen, wie sich der Wärmeentzug langfristig auf die thermophysikalischen Eigenschaften des Gebirges auswirkt. Denn was wir alle nicht wollen: Eine Abkühlung in einer solchen Dimension, die die Energiegewinnung langfristig schmälert.“

Gefördert wird das Projekt durch das Bundesminsiterium für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie im Rahmen des Programms „Stadt der Zukunft“ der Österreichischen Forschungsgesellschaft (FFG). Die Ergebnisse sollen der BBT SE und den Innsbrucker Kommunalbetrieben als Entscheidungslage für die weitere wirtschaftliche und technische Umsetzung dienen. (Quelle für Beitragsbild: BBE SE)

Auch interessant:

„Großwärmespeicher spielen in Zukunft wichtige Rolle“